* Exceptions to the Octet Rule

- Molecules with odd numbers of electrons

- Molecules with less than an octet BF_3
- Molecules with expanded octets those with d-orbitals Z>12

e.g. PCl₅ and SF₆

* Why is CO₂ linear and water bent?

 valence shell electron pair repulsion (VSPER) model – used to determine shape of molecules

-- where the Steric number (SN) is the number of items connected to central atom - AXE terminology

-- A = central element

-- X = atoms

- -- E = lone pairs
- linear geometry

-- AX₂ two species X bonded to central atom A

- -- example: BeCl₂, show lewis structure \approx VSPER model
- trigonal planar geometry

-- AX₃ example

--- e.g. SO₂ or O₃, show lewis structure & VSPER model - *tetrahedral molecular geometry*

-- AX₄ example

--- perfect tetrahedral geometry, X-A-X angle 109.5° --- e.g. CBr₄, show lewis structure & VSPER model

-- AX₃E example

-- trigonal pyramid molecular geometry, X-A-X < 109.5°

-- e.g. NH₃, show lewis structure & VSPER model, H-N-H $\approx 107^{\circ}$

-- AX₂E example

--- angular (bent) molecular geometry y, X-A-X < 109.5°

--- e.g. H₂O, show lewis structure & VSPER model, H-O-H $\approx 105^{\circ}$

- trigonal bipyramidal geometry

-- AX₅ example

--- perfect trigonal bipyramidal geometry

---- equatorial X-A-X angle is 120°

---- axial X-A-X angle is 90°

--- e.g. PCl₅, show lewis structure & VSPER model

-- AX₄E example

--- seesaw shaped molecular geometry

- --- lone pair goes into an equatorial position and causes repulsion with bp's
- --- e.g. SF₄, show lewis structure & VSPER model
 - ---- axial F-S-F angle is not 180° but 173°

---- equatorial F-S-F angle is not 120° but 102°

-- AX₃E₂ example

- --- T-shaped molecular geometry
- --- two lps occupy two of the equatorial positions
- --- e.g. ClF₃, show lewis structure & VSPER model
 - ---- axial F-Cl-F angle is not 180° but 175°
 - ---- F-S-F angle is not 90° but 87.5°

-- AX₂E₃ example

- --- linear geometry
- --- all three lps occupy the three equatorial positions
- --- e.g. I_3^- , show lewis structure & VSPER model, I-I-I angle = 180°

- octahedral molecular geometry

-- AX₆ example

- --- perfect octahedral geometry
- --- e.g. SF₆, show lewis structure & VSPER model, all F-S-F angles are 90°

-- AX5E example

- --- square pyramidal geometry, lp causes the atoms to be bent of the plane $\sim 2 \text{ YaOE}$ show laws structure & VSPER model O Ya E < 00°
- --- e.g. XeOF₄, show lewis structure & VSPER model, $O-Xe-F < 90^{\circ}$

-- AX_4E_2 example

- --- square planar geometry, the two lps cause same amount of repulsion leaving the remaining atoms in the plane
- --- e.g. XeF₄, show lewis structure & VSPER model, F-Xe-F = 90°

* How do we rationalize the shapes of the molecules?

- valence bond theory provides a means to explain the shapes in the VSPER model
- *hybrid atomic orbitals* combinations of atomic orbitals that lead to the geometry predicted by the VSPER model
- *sp*³ *hybridization* base geometry tetrahedral
 - (1) $2s + (3) 2p \rightarrow (4) sp^3$
 - e.g. CBr₄, NH₃, H₂O
- *sp² hybridization* base geometry trigonal planar
 - (1) $2s + (2) 2p \rightarrow (4) sp^2$
 - e.g. BF₃, SO₂
- sp hybridization base geometry linear
 - (1) $2s + (1) 2p \rightarrow (4) sp$

e.g. BeCl₂

- dsp^{3} hydridization - base geometry trigonal bipyramidal

(1) $3s + (3) 3p + (1) 3d \rightarrow (4) dsp^3$

e.g. PCl₅, SF₄, ClF₃, I₃⁻

- $d^2 s p^3 hydridization$ - base geometry octahedral

(1) $3s + (3) 3p + (2) 3d \rightarrow (4) d^2sp^3$ e.g. SF_6 , XeOF₄, XeF₄

*How do lone pairs affect the bond lengths in a structure?

- the repulsion caused by lp's not only reduces the angles but also causes the bonds between atoms to lengthen
- e.g. SF₆ vs SF₅
- * How does valence-bond theory differ from molecular-orbital theory? Is one a better model than the other?
 - valence-bond theory explains shape better than MO theory
 - MO theory is sometimes better at predicting properties
 - The two theories are consistent with each other at a level beyond this course

* Reprise: remember bond polarity?

- polar bonds and polar molecules
 - -- bond dipole
 - --- change in EN between 2 atoms makes the bond connecting them polar
 - --- this phenomenon leads to a bond dipole (arrow head points to the more EN atom)
 - -- permanent dipole moment

Dipole moment = 0

Dipole moment = 1.46D

Dipole moment = 0

Dipole moment = 0

- --- a molecule has a permanent dipole moment when it possesses an asymmetric orientation of polar bonds
- --- $\mu = Qr$ where Q is the partial electrical charge and r is the distance btwn the two atoms
- --- molecules that possess a permanent dipole: NH₃, H₂O, SO₂, SF₄, XeOF₄
- --- molecules that do not possess a permanent dipole: CBr₄, BF₃, BeCl₂, PCl₅, I₃⁻, SF₆, XeF₄

* Pi and Sigma Bonds

- the number of sigma bonds in a molecule is always give by the number of single bonds between the atoms
 - -- PCl₅ has 5 sigma bonds and water has 2
- if a molecule possesses one double bond then the count goes to 1 sigma bond and a 1 pi bond
- for a triple bond 1 sigma bond and 2 pi bonds
- How many sigma and pi bonds do each of the following molecules possess? XeOBr₄: 5 sigma and 1 pi; NO: 1 sigma and 2 pi; SO₂: 2 sigma and 2 pi